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SUPPORT AND CALIBRATION FUNCTIONS OF REACHABILITY REGIONS 
OF LINEAR CONTROLLED SYSTEMS* 

A.M. KOVALEV 

Linear non-autonomous systems with convex simultaneous contraints on the 
initial state and the control are considered. Because of its convexity, 
the constraint set can be described in terms of a support or a calibration 
function, The reachability region (RR) is also convex. Formulas are 
derived for the support and calibration functions of the reachability 
region, using the corresponding functions of the constraint set. Methods 
of RR construction and estimation are proposed on the basis of these 
formulas, 

1. Bc&c relationships. 
Consider the system 

i = A (t)s + B (t) u, t E 2’ = It,, t,l (W 

Here x is an n-dimensional phase vector, u is the m-dimensional control vector, which 
is a summable function of time t, and A (t) 'and B(t) are appropriately dimensioned contin- 
uous matrices. In the space of initial states and controls A = {h = (20, u (Q)} = R" x L (,L 
is the set of m-dimensional vector-functions summable on T), the feasible initial states and 
controls belongto the constraint set Q. For a given control u(t) and a given initial con- 
dition x0, the solution of system (1.1) is expressed by the Cauchy formula (here and hence- 
forth integration is from to to t) 

2 (t) = H (h to, xo, u) = 0 (t, to) x0 + s Y (t, z) u (z) dz 

which defines the linear operator H (t, t,, 0, 0): A - R”. We introduce the operator H, acting 
from the quotient-space AIN to R” by the formula H = H,E, where N = k&I, NN is 
the quotient-space of A by the subspace N and E is the natural mapping that associates to 
the element hi A its equivalence class EX = V.I. 

The reachability region (RR) Q (to, t) = {x E R”: x = H (t, to, x0, u), (x,, u (t)),E &I} is the 
image of the constraint set Q under the mapping H :Q = H&t,,, o,o)SZ. Let us investigate 
this region for the case when 52 is a convex set. 

2. The boundary point condition. 
In the space A consider the linear functional 

((Y,, v (z)), (x0, u (z))> = (Yip x0>* + s (v w, u %> dr 

(x, y>, = 5 XiY', XT = (xl, . . ., I”), y,~ R” 
i-1 

(2.1) 

where the set of functions V(T) is defined by the constraint set Q. Thus, for 

Q = {(x0, u(z)): x0 = 0, 11 u(z)/ dr Q A, u E P} 

U(T) are the essentially bounded functions. 
From (1.21, (2.1) it follows that the equivalehce class of the mapping H In the space A 

of initial states and controls is a plane manifold that belongs to the intersection of the 
family of hyperplanes 
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x’= (yi, ?.>, i = 1, 2, . . ., 1~ 

YiT = (VT* (t), $L (L z)), mT(tt to) = (‘PI* (t), . . 1 ‘Pn* (t)) 

YT (t, t) = ($I* (t, q, . . .t %1* (t, z)) 

(2.2) 

Theorem 1. The equivalence class of mapping H defines a boundary point of the RR if it 
completely'belongs to one of the supporting hyperplanesof the constraintset Q in the space A. 

In order to prove the theorem, note that if the equivalence class Ihl contains an 
interior pofnt h,EQ, then taking a neighbourhood of this point in R and acting on it by 
the operator H, we cbtain that the corresponding point I = Hh, is an interior point of the 
RR. Hence it follows that the equivalence classes defining the RR boundary points do not 
contain interior points of the constant set, i.e., they completely belong to some supporting 
hyperplanes of the set a. 

Using the description (2.2) of the equivalence classes , we obtain the boundary point 
condition from Theorem 1: a RR boundary point is determined by an equivalence class for which 
the normal y to the supporting hyperplane of the set fi is a linear combination of the vectors 
Yt introduced in (2.2), 

y=aly, f . . . +a,y,, ai = const, i = 1, . . ,, n (2.3) 

Formulas (1.2), (2.3) and the formula for the boundary of the constraint set provide 
a parametric description of the RR boundary. 

As an example, let us construct the RR of system (1.1) with the constraint set 

The boundary of the set B,, is defined by the equation F(h) = ((I~, u), (x,, u)) - A* = 0, 
and therefore 
is written in 

the normal vector is y = gradIF = bo1 4. The boundary point condition (2.3) 
the 

whence we obtain 

Substituting 

Substituting these Values in the equations of the boundary of the set Q,, we find t&at 

#, aT=(a,, . . . . a,) 

a = mTel(t, t,)x,, u = ‘I’ (t, t) W-l(t, t,,)x,, 

into (1.2), we obtain 

x0 = CDT@, to) Y-l@, &)rr, 24 = Y=(t, z) Y-l(t, &)I 

y (tv to) = @(t, t,)@=(t, to) -t s Y (t, t) YT(t, z) dz 

the RR is an ellipsoid with the boundary 

(Y-'(t,t,)x, x)~ = AZ (2.5) 

For the case when the initial set consisiits of a single point x,,, this is a well-known 
result /l/. 

3. The support function of the RR. 
The convexityof the constraint setand the existence of the scalar product (2.1) in the 

space A make it possible to compute the support function qs(Y) of the set &I. Let us ex- 
press the support function IJQ((B) of the RR in terms of qn (v). We have 

Hence we obtain for the RR support function 

@ (B)' = (IQ (XB) (3.1) 

We use (3.1) to compute the support function of the RR of the system (1.1) for three 



191 

types of constraints: 8, (formula (2.4)), P,, and P,, where 

611= ((q, u (7)) : mar (1 +p' 1, 82% 1 uj (r) [, i = 1, . . . , n; j = i, . . . , m) g A} 
13.2) 

Let us show the detailed calculations for PI. Fxom the dsfinition of the SUppOrt func- 

tion, we obtain from (3.1), (3.2) 

Q,(B) = ;zx {(@T (1, lo) PI I& + s; VT (6 "t) 69 a Wmdr} < 

(3.3) 

The equality in (3.3) is attained when 

zoli = A siga(cP,(t, to), B),,, WI’ W = A sign (9j (te ‘0s B), 

Therefore, for the support function qc,@) we obtain the expression on the right-hand 
side of the chain of inequalities (3.3). 

We similarly obtain expressions for the support functions and tie corresponding values 
of the initial state and control for the sets P, and $2,: 

k is the number of variables Si, 7h (i = I,...,n;j = I....,m) that are equal to the maximum 
value A. 

RR support functions for the case when the constraints are i-posed only on the control 
were obtained in /l, 21. 

4. CaZibation func*&mofthgAR. 

The constraint set is assumed to be absorbing in its linear hull L(Q) (if this is 
not so, then it is first made absorbing by a translation). Then the calibration function of 
the set n, p*(h) = inf {T> 0:I.E r62), is a convex functional. In A IN define the function&l 

P(f) = infPn(h) (4.') 
=f 

The folLowing theorem was proved in f3/ for the calibration function of the reachability 
region PQ @h 

Theormi 2. The functional P&' is a calibration function of the RR. 
In order to apply this theorem, we need the description of the equivalenoe class El;-5 . 

By direct substitution we verify that H;'x consists of the elements hi A defined by 
the multivalued mapping 

(4.2) 

where C1, C, (?f are matrices with arbitrary elements that produce a non-singular matrfx I). 
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5. &'Jt&%ZtiOTl i?l CO?ltrO~ probtms. The formulas obtained for the calibration 
and support functions may be used to construct and estimate the RR and also to solve other 
prcblems of control theory. Let us suggest some applications. 

From Theorem 2 we have 

int Q = {x E R”: PN,-l.r < I), 6’Q = {x E RI’: PH,‘x L= f ) (5.1) 

I”ne main difficulty in applying these formulas is the evaluation of the functional P. of 
we use only approximate values, then (5.11, (4.2) give inner estimates of the RR. Let P (4 
be some single-valued section of the mapping F(z)._ Then an inner estimate is given by the 
formula 

Qb = {J E I?“: Pn (P tx)) < 1) (5.2) 

Choosing an appropriate P(X), we can ensure any prespecified accuracy of the estimate 
(5.21. 

Inner and outer estimate of the RR can be obtained if the calibration function of the 
constraint set 51 is comparable with the calibration function of another set Q': PLI (A) .< Pa, (h) 

~~~)~Q~ (W. Then from Theorem 2 and formulas (5.1), (4.21 we obuain the inclusion QZ, 
t , Where &’ is the RR of system (1.11 with the constraint set SY, 

Tk~us,~ for system (1.1) with the constraint set fz,, the RR is an ellipsoid with the 
boundary (2.5). Therefore, for systems whose constraints are comparable with (2.4) we can 
obtain ellipsoidal estimates of the RR. In particular, we have the inequalities ps,>~s,, ps,> 

Pd our results for system (1.1) with the constraint set Q, produce the outer ellipsoidal 
estimate (2.5), and the results with the constraint set I;2, produce an inner estimate. 

There are advantages to applying the support function for RR analysis. The boundary of 
the RR can be defined as the envelope family of support hyperplanes (z,&== pa(@), and there- 
fore at its points of differentiability the support function is defined by the equations 

(2. B)n = 44 lx% 2 = %Qiag. It is fairly easy to obtain an estimate by polyhedra 6% Pi&l < 9Q (Bi)> 
fixing the normals @I to the faces, whose choice may be determined by some additional con- 
ditions specified in the problem. Thus, in observation problems, a useful estimate is by 
rectangles I z’I B 9~ (4 i = I, 2,. . . n, where ei is the unit vector along the axis 02. By increas- 
ing the number of faces, we can achieve the required estimation accuracy. 

Formula (3.1)‘ gives a solution of the problem of visiting the hyperplane (a,&= d, defined 
by the condition Q(U) = d. 

If we have pQ, CP) > qfft (8) vi% then clearly Q,3Q,. This can be used to obtain a comparative 
estimate of the RR. In particular, from the results of Sect.3 we have qs,>q4,>pp,, and 
therefore Q,XQo3Qn, which agrees with the result obtained using calibration functions. 
Moreover, identifying in the formula for the support function the terms that depend on the 
initial state (characterized by the functions vt(ftl,ie) f and on the control (characterized by 
the functions $q(t.?)), we can estimate their contribution to the evolution of the RR, which 
iS 

1. 
2. 

3. 

also important< for the development of real control systems and control laws. 
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